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Abstract—The significance of early detection of COVID-19 has
been widely acknowledged as a means of reducing its spread
and mortality rates among patients. Deep learning techniques
for COVID-19 classification based on ultrasound (US) data have
been extensively employed. However, detecting COVID-19 based
on US images continues to be challenging primarily due to
limited datasets with noisy and low-resolution images. This study
investigates methods to enhance classification performance by
incorporating disease severity score masks while training pre-
trained models enhanced with self-attention mechanisms. The
disease severity scores range from 0 for healthy lung tissue to
1 for initial signs of abnormality, and 2 and 3 for advanced
pathological artifacts. These masks and their corresponding
US images are employed as inputs to pre-trained models for
feature extraction. Subsequently, features extracted from the
masks are utilized to recalibrate features obtained from US
images using self-attention mechanisms. The proposed method
achieves classification accuracy of 95.4, 90.4, 95%, 83%, and
92% when using pre-trained models VGG16, NASNet-Mobile,
MobileNet_V2, ResNet50, and Xception, respectively. Further, all
pre-trained models yield a low standard deviation of less than 5%.
The results demonstrate that incorporating disease severity masks
improves the classification performance, thus offering promising
techniques for enhancing COVID-19 detection using ultrasound
imaging.

Index Terms—COVID-19, US images, pre-trained models,
classification, severity score, attention

I. INTRODUCTION

The COVID-19 virus has affected more than half a billion
people by mid-2022, resulting in 6 million deaths globally [1].
This virus affects the respiratory system, with varying severity
of symptoms ranging from minor, such as cough and fever, to
major such as organ failure and even death [2]-[5]. The virus
is considered a threat to humans because it can spread directly
through contact with an affected person or indirectly through
airborne or droplet transmission. [6], [7]. Consequently, the
spread of the virus caused a worldwide shutdown after being
proclaimed a pandemic by the World Health Organization.

Detection of COVID-19 mainly relies on the reverse
transcription-polymerase chain reaction (RT-PCR) test; how-
ever, this test has been reported to have low sensitivity [5].
Therefore, medical imaging modalities with high sensitivity
and accuracy such as computed tomography (CT) [8], [9] and
ultrasound (US) [10], [11] were proposed to detect COVID-19.
Ultrasound is considered a better option than CT because it is
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non-ionizing, portable, easy to disinfect (to prevent the spread
of COVID-19 from patient to another subject or to healthcare
workers such as physicians and nurses), and less expensive
[5], [12]. However, detection and classification of COVID-19
using US images are still challenging due to limited available
datasets with noisy and low resolution of US images.

In literature, various deep-learning models, mostly utilizing
pre-trained models, have been proposed for COVID-19 de-
tection using ultrasound (US) images. Pre-trained models are
preferred due to the limited availability of US image datasets.
These models aim to classify COVID-19 into three classes,
namely, lungs affected by the COVID-19 virus, lungs affected
by bacterial pneumonia, and healthy lungs (normal). For
instance, pre-trained VGG16 was proposed in [12]-[14], while
VGG19, InceptionV3, Xception, and ResNet50 were presented
in [15] for COVID-19 detection. Additionally, VGG16 and
ResNet18 were proposed in [16], ResNet50 was employed in
[17], and ResNet50, DenseNet121, Inception_ResNet_V2, and
Inception_V3 were introduced in [18] to extract features from
input US images and then classify the condition of the subject
lung. Further pre-trained methods are presented in [10], [19].
It is worth noting that most of these pre-trained models are
trained using ImageNet dataset [20], except pre-trained using
in [18] they are trained using RadlmageNet [21]. Although
pre-trained models (trained using ImageNet or RadlmageNet
) are used for COVID-19 detection to tackle the limited US
dataset, the classification results need further improvement
using a more advanced classification method. Therefore, pre-
trained models are also used to extract features from US
images in this work and refine these features using features
that are extracted from disease severity score masks.

Deep-learning models have also been proposed to predict
the severity score of COVID-19 infection based on lung
ultrasound (LUS) images [22]. The severity score measures
the progression of COVID-19 infection. Score O represents
a healthy lung, indicated by the presence of a continuous
pleural line. The first sign of alteration in the pleural line
(A-line) is marked as an abnormality and given a score of
1. Advanced lung infection with consolidation, whether small
or large, is indicated by score 2. Finally, the presence of a
hyperechogenic area (white lung) under the pleural surface
and B-line is assigned a score of 3. Different deep-learning
models have been proposed to predict the disease severity



score [22]-[26]. For example, spatial transformer networks
and frame-based segmentation have been proposed for score
prediction and estimation of the segmentation mask indicating
pathological artifacts [22]. However, a protocol for assessing
COVID-19 severity to score lung ultrasound dataset has yet to
be standardized [27]. Therefore, it is hard to train deep learning
for disease severity scores and compare results across various
datasets, even if such datasets are available.

However, exploiting severity scoring may help enhance the
classification of COVID-19 into the lungs affected by COVID-
19, lungs affected by bacterial pneumonia, and healthy lungs.
A healthy lung should have a severity score of 0, while
COVID-19 or bacterial pneumonia are expected to have other
scores (1, 2, and 3) due to their consolidation, B-line, and
other pathological artifacts. Fortunately, a publicly available
pre-trained segmentation model trained by [22] can predict
the severity score mask, as shown in Figure 1 (further details
in Section II). Therefore, this work investigates the idea
of using the predicted score mask features to calibrate the
features extracted from the associated US image to enhance the
classification performance of pre-trained models. The features
are extracted from the score mask and US image using
various pre-trained models, namely, VGG16, NASNet-Mobile,
MobileNet_V2, ResNet50, and Xception. The attention is
carried out using multihead self-attention. It is also worth
mentioning that the CNN model has shared weights to reduce
its complexity and keep it lightweight.

II. METHODOLOGY

As mentioned earlier, this work investigates leveraging the
potential of a score mask to improve the classification of
ultrasound (US) images (frames) into three classes: COVID-
19, bacterial pneumonia, and normal (healthy lung). Since
there is no available severity score, the publicly available pre-
trained model by [22] is employed to obtain the severity score
mask for each US image. Frames (images) are extracted from
the US video clip by choosing non-adjacent frames, as it has
been shown in [18] that the non-adjacent frame selection is
superior to the common method (constant frame selection) and
comparable to random frame selection. Then, each frame is fed
as input to the pre-trained models provided by [22] to obtain
the severity score. Each US frame (image) has four severity
score masks, as shown in Figure 1. The COVID-19 frame
depicted in Figure 1(a) and its corresponding score masks 0, 1,
2, and 3 are shown in (b), (c), (d), and (e) respectively. Since
the severity score is based on the appearance of pathology
artifacts in the US image, this COVID-19 case in figure 1
should have pathology artifacts (such as B-line) in scores
1 to 3. As expected, more artifacts (B-lines) are visible in
score masks 1, 2, and 3. Similarly, bacterial pneumonia is
depicted in Figure 1(f) and its corresponding score masks 0,
1, 2, and 3 are shown in (g), (h), (i), and (j) respectively.
Consolidation artifacts can be clearly seen in Figure 1(j). In
contrast, the normal (healthy lung) US image is shown in the
last row of Figure 1 (k). The normal class is characterized
by the presence of A-lines, which appear as horizontal lines

in the US image. As expected, only A-lines should appear in
the scoring mask O (see Figure 1(1)). Such masks may aid in
recalibrating US image features using multi-head self-attention
and subsequently enhancing COVID-19 classification.

The chosen frame containing the US image and its asso-
ciated disease severity score are used as the inputs to the
pre-trained model with shareable weights as illustrated in
Figure 2. A pre-trained CNN model is utilized to extract
features from the US images and their corresponding score
masks. Any CNN model from the pool of pre-trained models
such as VGG16, NASNet-Mobile, MobileNet_V2, ResNet50,
and Xception) may be considered to extract abstract features.
Notably, the CNN model is designed to be shareable, ensuring
the proposed model remains lightweight and computationally
efficient. Next, the extracted features from the US image
undergo self-attention with features extracted from each scored
mask individually. The multi-head self-attention mechanism,
as proposed in [28], is employed here to recalibrate the features
extracted from the US image. Subsequently, the recalibrated
features are concatenated and fed into two fully connected
layers (FC) for final classification. The first fully connected
layer comprises 128 neurons with the Rectified Linear Ex-
ponential Unit (RLEU) activation function. In comparison,
the second fully connected layer consists of three neurons
(corresponding to the number of classes) with the softmax
activation function. The pre-trained model’s layers are frozen
except for the last block. The proposed model is trained
using 100 epochs, focal loss function (a generalization of the
cross-entropy loss function), Adam optimization, and an early
stopping method based on validation loss.

The performance of the proposed method is evaluated by
comparing the true label with the predicted label, and then the
confusion matrix is generated. Sensitivity, precision, F1_score,
and accuracy are used to assess the performance of the
proposed method, and they are given as follows.
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where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative, respectively.

IIT. RESULTS

The proposed method is evaluated using US COVID-19
images in [12], [29]. The dataset comprises 202 videos and 59
images captured using convex or linear ultrasound probes from
216 patients. This dataset exhibits high level of heterogeneity
as it is acquired from various sources; therefore, only a subset
of the dataset is utilized in this study so that the dataset used
is homogeneous. The data is obtained from Northumbria (a
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Fig. 1: Samples of US images depicting COVID-19, bacterial pneumonia, and healthy lungs are provided, each with their
associated disease severity scores. COVID-19 US images are shown in (a), with corresponding score masks 0, 1, 2, and 3
depicted in (b), (c), (d), and (e), respectively. Bacterial pneumonia US images are shown in (f), with corresponding score
masks 0, 1, 2, and 3 shown in (g), (h), (i), and (j), respectively. Normal (healthy lung) US images are presented in (k), with
corresponding score masks 0, 1, 2, and 3 illustrated in (1), (m), (n), and (o), respectively.
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Fig. 2: The overall classification model takes the US image
and its associated disease severity score masks as input. The
severity score ranges from O to 3, where O indicates a
healthy lung, 1 indicates the first sign of abnormality, and 2
and 3 indicate an advanced pathological state. FC and ),
pneumonia denote the fully connected layer, concatenation,
and Bacterial pneumonia, respectively.

healthcare center serving a large population in the northeast
of the United Kingdom) and Neuruppin (a medical school
in Neuruppin, Germany). This data acquisition employs GE
Healthcare US equipment and follows the BLUE protocol [30].
Furthermore, the presence of COVID-19 has been confirmed
through RT-PCR testing, while bacterial pneumonia has been

confirmed using thoracic X-ray and CT scans. For this paper,
the data is divided into five-fold cross-validation based on
the video clip to avoid data leakage. The results provided
are averaged over five repetitions and presented. Performance
metrics used in this paper are averaged sensitivity, precision,
Fl-score, and accuracy, along with their standard deviations.

Table I illustrates the classification performance using var-
ious CNN models (pre-trained models: VGG16, NASNet-
Mobile, MobileNet_V2, ResNet50, and Xception) along with
all severity score masks. The performance metrics are all
above 90%, except when utilizing the pre-trained ResNet50
model, which may be attributed to limited data for training this
particular model. The pre-trained VGG16 model demonstrates
the highest classification performance with an accuracy of
95.4%. It exhibits the lowest standard deviation across all
classification metrics, except for precision, where the lowest
standard deviation is observed with the pre-trained Xception
model at 3%. In summary, these preliminary results, employ-
ing score masks, pre-trained models, and multi-head self-
attention, indicate an improvement in classification perfor-
mance. Further experimentation is required, including training
with more advanced deep learning models such as vision
transformers and potentially collecting a larger COVID-19 US
dataset.

The use of the severity score mask contributes to improving
the classification results. To investigate the effectiveness of
employing this severity score mask, experiments are conducted



TABLE I: The classification results when using various CNN
models and masks of disease severity scores (0, 1, 2, and 3).
The bold values indicate the best mean (M) and standard
deviation (S) results.

CNN model Sensitivity | Precision | Fl_score | Accuracy
M 95.6 95.6 95.6 95.4
VGGli6 S 33 32 3.2 3.4
. M 90.6 91.2 90.4 90.4
NASNet-Mobile S i3 33 73 i5
. M 95.0 95.2 95.0 95.0
Mobilenet_V2 S 33 30 33 335
M 83.6 83.6 83.2 83.0
ResNet50 S 14 14 15 16
Xeeption M 91.6 92.6 92.2 92.0
P S 40 30 3.7 41
100 T T
/GG 16
o | *NASINet—Pu'Iohlle -
Maobilenet_V2
mefe= Reshet50
gg | |=@= Xception ;

85

Accuracy

70 :

Mask (0) Mask (0, 1) Mask (0. 1,2) Mask (0, 1, 2, 3)

Fig. 3: The accuracy of various CNN models when using US
images with mask representation of score 0, mask
representation of scores 0 and 1, mask representation of
scores 0, 1, and 2, and mask representation of scores 0, 1, 2,
and 4.

using different configurations: one mask representing score 0,
two masks representing scores 0 and 1, three masks repre-
senting scores 0, 1, and 2, and all score masks as depicted
in Figure 2. The accuracy results for all configurations using
pre-trained models are shown in Figure 3. Figure 3 illustrates
that the classification performance improves by including more
severity score masks, with the best result obtained when
using all severity score masks. For instance, VGG16 provides
accuracies of 80%, 85%, 92%, and 95% when using masks for
scores 0, 0 and 1, 0, 1, and 2, and O, 1, 2, and 3, respectively.
This demonstrates an improvement from 80% to 95% when
utilizing all severity score masks. Furthermore, pre-trained
VGG16 and MobileNet_V2 have almost similar classification
performance, as depicted in Figure 3. These two pre-trained
models provide the best classification results among all the
models considered in this paper. These results indicate that
feature extraction from the severity score masks enhances the
classification performance.

IV. CONCLUSIONS

Detection of COVID-19 using ultrasound (US) images
remains challenging for several reasons, including the noise
and low resolution inherent in US images, as well as the
limited availability of datasets. This study aims to enhance
classification performance by incorporating severity scores
corresponding to US images, utilizing pre-trained models
to address dataset limitations, and employing self-attention
mechanisms to recalibrate features extracted from US images
based on individual severity masks. The improvements in
classification performance demonstrate the effectiveness of
the proposed method, with all pre-trained models achieving
an accuracy of over 90%, except for the ResNet50 model.
However, a limitation of this study is the reliance on severity
score masks from a pre-existing method, as the corresponding
severity score data is private. Therefore, further experimen-
tation is contingent upon releasing this dataset to the public
domain or acquiring a similar scoring dataset. Nevertheless,
despite this limitation, the promising results suggest that incor-
porating severity masks enhances classification performance
and may facilitate the effective detection of COVID-19 using
US images.

Future work may include pre-trained models optimized
using RadImagenet instead of Imagenet. Also, independent
models for severity and classification can be attempted when
appropriate curated dataset becomes publicly available.
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